
Time handling in C (1)

In classical C the reading of current time from the system clock is performed as follows:

#include "time.h"

time_t now; // time_t is specified by typedef, in Visual Studio it is is a 64-bit integer

time(&now); // the number of seconds since January 1, 1970, 0:00 UTC

To get the current date and time understandable for humans use the standard struct tm:

struct tm // do not declare it in your code, it is already declared by time.h

{

 int tm_sec; // seconds after the minute - [0, 60] including leap second

 int tm_min; // minutes after the hour - [0, 59]

 int tm_hour; // hours since midnight - [0, 23]

 int tm_mday; // day of the month - [1, 31]

 int tm_mon; // months since January - [0, 11], attention: January is with index 0

 int tm_year; // years since 1900, attention, not from the birth of Christ

 int tm_wday; // days since Sunday - [0, 6], attention: Sunday is with index 0, Monday 1

 int tm_yday; // days since January 1 - [0, 365]

 int tm_isdst; // daylight savings time flag

};

To fill this struct:

struct tm now_tm;

localtime_s(&now_tm, &now);

Time handling in C (2)
Example:

printf("Today is %d.%d.%d\n",

now_tm.tm_mday, now_tm.tm_mon + 1, now_tm.tm_year + 1900);

Function asctime_s converts the struct tm to string:

char buf[100];

asctime_s(buf, 100, &now_tm);

printf("%s\n", buf); // prints like Thu Jan 23 14:26:42 2020

but here we cannot set the format. Better is to use function strftime, for example:

strftime(buf, 100, "%H:%M:%S %d-%m-%Y", &now_tm);

printf("%s\n", buf); // prints according to Estonian format 14:26:42 23-01-2020

The complete reference of strftime is on http://www.cplusplus.com/reference/ctime/strftime/

The attributes of struct tm may be modified. For example, if we want to know what date is

after 100 days, do as follows:

struct tm future_tm = now_tm;

future_tm.tm_mday += 100; // add 100 days

time_t future = mktime(& future_tm); // convert back to time_t

localtime_s(&future_tm, &future); // convert once more to struct tm

asctime_s(buf, 100, &future_tm);

printf("%s\n", buf); // prints like Sat May 2 15:26:42 2020

http://www.cplusplus.com/reference/ctime/strftime/

Time handling in C++

In C++ we have more powerful but complicated tools:

#include <chrono> // see https://en.cppreference.com/w/cpp/chrono.html

using namespace std::chrono; // do not forget!

Namespace chrono includes several concepts:

• duration

• timepoint

• clock

• date

• timezone

The last two of them are extensions introduced in C++ v. 20.

https://en.cppreference.com/w/cpp/chrono.html

Rational numbers (1)

In mathematics, a rational number can be expressed as fraction a / b, where a is called as

numerator and b as denominator. The decimal expansion of a rational number may have

finite number of digits like 1.234. But it may also have endless number of digits in which

a sequence of digits is repeating over and over, like 7 / 3 = 2.33333…..

An irrational number like sqrt(2), π, e has also endless decimal expansion, but without

repeating.

Problems with endless rational numbers:

double x = 2.3333333; // actually in specification this expression is written as 7 / 3

double y = x * 3; // we get 6.9999999, but the correct value is 7

To get results of calculations that are as exact as possible, we need to use template ratio:

typedef <numerator_as_integer_constant, denominator_as_integer_constant> ratio_name;

The denominator has default value 1. Examples:

#include <ratio> // see http://www.cplusplus.com/reference/ratio/ratio/

const int numerator = 7, denominator = 3; // must be constant expression

typedef ratio<numerator, denominator> test1;
typedef ratio<7, 3> test2;

To access numerator and denominator, use public members num and den, for example:

cout << test1::num << ' ' << test1::den<< endl;

http://www.cplusplus.com/reference/ratio/ratio/

Rational numbers (2)
The following expression is for adding ratios:

typedef ratio_add<addend_1 _as_ratio, addend_2_ as_ratio> ratio_name;

Example:

typedef ratio<7, 3> test1;

typedef ratio<5, 6> test2;

typedef ratio_add<test1, test2> sum;

cout << sum::num << ' ' << sum::den << endl; // prints 19 6

ratio_subtract, ratio_multiply and ratio_divide are similar.

An integral_constant is a standard class (better to say struct) template that stores the type

and constant value. For example, integral_constant<bool, true> stores a boolean value

true and integral_constant<int, 100> stores integer 100. It has two members: type and

value.

To compare two ratios write expression:

typedef ratio_equal<ratio_1, ratio_2> integral_constant_name;

The results is integral_constant<bool, true> or integral_constant<bool, false>

Example:

typedef ratio<7, 3> test1;

typedef ratio<5, 6> test2;

typedef ratio_equal<test1, test2> res;

cout << (res::value ? "Equal" : "Not equal") << endl;

Rational numbers (3)
ratio_not_equal, ratio_less, ratio_less_equal, ratio_greater, ratio_greater_equal are

similar.

All the ratio templates are evaluated at compile time. The values for numerator and

denominator cannot be calculated at run time, for example:

int x;

cin >> x;

typedef ratio <x, 2> test; // error

There are no C++ operations between rational numbers and integers or doubles. So, if we

have

typedef ratio<5, 6> test2;

and we want to multiply it with 2, we need to write

typedef ratio<2, 1> test3; // or simply ratio<2>

typedef ratio_multiply<test2, test3> test4;

cout << test4::num << ' ' << test4::den << endl; // prints 5 3

C++ has several predefined ratios, for example nano (i.e. 1 / 1e9), micro (i.e. 1 / 1e6), milli

(i.e. 1 / 1e3), kilo (i.e. 1e3 / 1), mega (i.e. 1e6 / 1), etc.

Duration (1)

Template duration (see https://en.cppreference.com/w/cpp/chrono/duration.html)

represents an interval between two timepoints:

template<typename T1, typename T2> class duration { ………….. };

Here T1 is used for variable storing the number of ticks (int, long int, double, etc.) and T2

is for ratio presenting the period of one tick in seconds. The default value for T2 is

ratio<1, 1> (or simply ratio<1>). Examples:

duration<long int> d1; // ratio has default value, it means that tick is one second

duration<long int, ratio<60, 1> > d2; // tick is one minute

duration <long long int, ratio<1, 10>> d3; // tick is one tenth of second

Predefined ratios like nano or micro often help to define durations:

duration <long int, micro> d4; // tick is one microsecond

Constructor without parameters does not initialize the number of ticks, consequently

variable d1, d2, d3 and d4 are not ready to use.

duration <long int, milli> d5(1000); // now the duration is 1000 ms

Method count returns the value of ticks, for example:

cout << d5.count() << endl;

There are no methods to set a new value ticks.

https://en.cppreference.com/w/cpp/chrono/duration.html

Duration (2)
There are several typedefs for typical durations. Examples:

hours d1(24); // declares time interval 24 hours

minutes d2(10); // declares time interval 10 minutes

seconds d3(20); // declares time interval 20s

milliseconds d4(1500); // declares time interval 1500ms

microseconds d5(1500); // declares time interval 1500μs

nanoseconds d6(1500); // declares time interval 1500ns

days d7(31); // declares time interval 31 days (from C++ v.20)

weeks d8(1); // declares time interval 1 week (from C++ v.20)

months d9(3); // declares time interval 3 months (from C++ v.20)

years d10(100); // declares time interval 100 years (from C++ v.20)

Duration has a large set of operator functions for arithmetics and comparison. The

operands may be of different types. Examples:

milliseconds d1(1000);

milliseconds d2(2000);

milliseconds d3 = d1 + d2; // get time interval 3000ms

cout << d3 << endl; // prints 3000ms

cout << boolalpha << (d1 > d2) << endl; // prints false

milliseconds d4 = d3 + 1000; // error, operations between durations and integers

 // are not defined

Duration (3)

milliseconds d1(1000);

milliseconds d2(2000);

microseconds d3 = d1 + d2; // different types !

cout << d3 << endl; // prints 3000000us

If the implicit cast is not possible, the duration_cast operator solves the problem:

milliseconds d4 = d3; // error

milliseconds d4 = <duration_cast>(d3); // correct

cout << d4 << endl; // prints 3000ms

But

milliseconds d5(100);

seconds d6 = duration_cast<seconds>(d5); // formally correct

cout << d6 << endl; // prints 0s because in typical durations the number of ticks is integral

duration<double> d7 = d5;

cout << d7 << endl; // prints 0.1s: correct

Read more on https://en.cppreference.com/w/cpp/chrono/duration.html

https://en.cppreference.com/w/cpp/chrono/duration.html

Duration (4)

Suppose we have a long duration measured in seconds. To analyse it, in most cases we

need to recalculate it into format hh:mm:ss. For that C++ v.20 has a helper class

hh_mm_ss.

Examples:

seconds dsec = measure_process_duration(); // some function is called, result is 7456 s

hh_mm_ss hms1(dsec); // create object from class hh_mm_ss

cout << "Process duration was " << hms1.hours() << ":" << hms1.minutes() << ":" <<

hms1.seconds() << endl; // prints 2h:4min:16s

milliseconds dmsec = measure_sorting_duration(); // result is 745454924 ms

hh_mm_ss hms2(dmsec);

cout << "Sorting needed " << hms2.seconds() << " " << hms2.subseconds() << endl;

 // prints 14s 924ms

To compare two objects from class hh_mm_ss turn them to duration:

if (hms1.to_duration() < hms2.to_duration()) { …. }

To covert object from class hh_mm_ss to string with C++ v.20 formatting

cout << format("{:%R}", hms1) << endl; // prints 02:04

cout << format("{:%T}", hms1) << endl; // prints 02:04:16

Read more on https://en.cppreference.com/w/cpp/chrono/hh_mm_ss.html

https://en.cppreference.com/w/cpp/chrono/hh_mm_ss/formatter.html

https://en.cppreference.com/w/cpp/chrono/hh_mm_ss.html
https://en.cppreference.com/w/cpp/chrono/hh_mm_ss/formatter.html
https://en.cppreference.com/w/cpp/chrono/hh_mm_ss/formatter.html

Clock and time_point (1)

C++ v.11 defines 3 clocks:

• system_clock represents timepoints associated with the computer usual real-time clock.

See https://en.cppreference.com/w/cpp/chrono/system_clock.html

• steady_clock guarantees that it never gets adjusted.

• high_resolution_clock represents the clock with the shortest possible tick period. In

Visual Studio equivalent with the system_clock.

C++ v.20 expands the list of clocks:

• utc_clock for Coordinated Universal Time

• tai_clock for International Atomic Time

• gps_clock for GPS time
• ………..

In this course we deal only with the system_clock. To read the current time from the

system clock use method now():

system_clock::time_point now = system_clock::now();

Turn attention, that a time_point is always associated with a clock:

time_point<system_clock> t; // correct

system_clock::time_point t; // correct

time_point t; // error, clock not specified

https://en.cppreference.com/w/cpp/chrono/system_clock.html

Clock and time_point (2)
Actually, time_point (see https://en.cppreference.com/w/cpp/chrono/time_point.html) is a

template:

template<typename T1, typename T2> class time_point { ………….. };

Here T1 is used for clocks (system_clock, etc.) and T2 for duration, i.e. the interval

between the current moment and the epoch (or origin, 01.01.1601 in case of Windows,

01.01.1970 in case of Linux). Its value is actually the duration from the epoch (measured

in 100ns units in case of Windows and seconds in case of Linux).

For example, if we write:

time_point<system_clock, duration<long long int, ratio<1, 1> > > t;

then t measures the number of seconds from epoch, the value is retrieved from system

clock. Theoretically we may declare timepoints in many different ways but actually the

duration parameters (epoch and tick period) are built into clock. Consequently, each clock

must have its own standard for timepoint:

To know which ratio is used in the duration of system clock, write the following snippet:

cout << system_clock::period().num << " " << system_clock::period().den << endl;

On the instructor's computer the result was 1 10000000.

To know what is the type for ticks in the duration of your system clock, write the

following code snippet:

cout << typeid(system_clock::rep).name() << endl;

On the instructor's computer the result was __int64.

https://en.cppreference.com/w/cpp/chrono/time_point.html

Clock and time_point (3)

For many people it is more convenient to continue with C time handling tools:

system_clock::time_point now = system_clock::now();

time_t now_t = now; // convert to time_t

struct tm now_tm;

localtime_s(&now_tm, &now_t);

struct tm future_tm = now_tm;

future_tm.tm_mday += 100; // add 100 days

time_t future_t = mktime(& future_tm);

There is a standard function std::put_time to create from struct tm time strings for iostream

and sstream:

#include <iomanip>

cout << put_time(&future_tm, "%d-%m-%Y %H:%M:%S") << endl;

or

stringstream sout;

sout << put_time(&future_tm, "%d-%m-%Y %H:%M:%S") << endl;

cout << sout.str() << endl;

See more from http://www.cplusplus.com/reference/iomanip/put_time/

To turn back to C++ tools:

system_clock::time_point future = system_clock::from_time_t(future_t);

http://www.cplusplus.com/reference/iomanip/put_time/

Clock and time_point (4)

Timepoint has a set of operator functions for arithmetics and comparison. The only

operation between two timepoints is subtraction, its result is a duration:

system_clock::time_point start = system_clock::now();

int i;

cin >> i; // to introduce a pause

system_clock::time_point end = system_clock::now();

auto diff = end - start;

cout << typeid(diff).name() << endl;

the result is class std::chrono::duration<__int64,struct std::ratio<1,10000000> > , i.e. the

type of duration presenting the difference between two timepoints is the same as the

duration in system_clock::time_point.

We may convert implicitly the difference into nanoseconds but not to milliseconds or

seconds:

nanoseconds dn = diff;

duration<double> ds = diff;

cout << dn << endl; // prints 4487655200ns

cout << ds << endl; // prints 4.48766s

Clock and time_point (5)

It is possible to add to timepoint a duration as well as subtract a duration from it:

system_clock::time_point now = system_clock::now();

cout << now << endl; // prints 2025-08-22 11:43:10.4304195

system_clock::time_point after_an_hour = now + hours(1);

cout << after_an_hour << endl; // prints 2025-08-22 12:43:10.4304195

system_clock::time_point before_an_hour = now - hours(1);

cout << after_an_hour << endl; // prints 2025-08-22 10:43:10.4304195

Template function floor<>() truncates the timepoint to a precision of days or seconds:

system_clock::time_point in_days = floor<days>(now);

cout << in_days << endl; // prints 2025-08-22 00:00:00.000000

system_clock::time_point in_seconds = floor<seconds>(now);

cout << in_seconds << endl; // prints 2025-08-22 10:43:10.000000

Remember that timepoint is template<typename T1, typename T2> class time_point { ... };

where T1 is the clock and T2 is the duration from the epoch.

time_point<system_clock, days> t1 = time_point_cast<days>(now);

 // t1 presents the number of days from epoch

cout << t1 << endl; // prints 2025-08-22

time_point<system_clock, seconds> t2 = time_point_cast<seconds>(now);

 // t2 presents the number of seconds from epoch

cout << t2 << endl; // prints 2025-08-22 10:43:10

Clock and time_point (6)

To simply the work of code writers, several aliases are introduced:

• sys_time is the alias of time_point<system_clock, duration>

• sys_days is the alias of time_point<system_clock, days>

• sys_seconds is the alias of time_point<system_clock, seconds>

So, we may write simply:

sys_time now = system_clock::now();

sys_days now_days = timepoint_cast<days>(now);

sys_seconds now_seconds = timepoint_cast<seconds>(now);

Calendar (1)

C++ v.20 provides several classes for operating with calendar. The full list is on page

https://en.cppreference.com/w/cpp/chrono.html. The most important of them are:

year y { 2026 }; // allowed values -32767 … +32767

cout << static_cast<int>(y) << endl; // get the value wrapped into object

cout << "This is" << (y.is_leap() ? " " : " not") << " a leap year" << endl; // leap year?

month m1 { 2 }; // allowed values 1 … 12

cout << static_cast<unsigned int>(m1) << endl; // get the value wrapped into object

month m2 { February }; // constants January, February etc. are defined in namespace chrono

cout << static_cast<unsigned int>(m1) << endl; // prints 2

day d1 { 15 }; // allowed values 1 … 31

cout << static_cast<unsigned int>(d1) << endl; // get the value wrapped into object

weekday wd1 { 1 }; // allowed values 0 … 6, Sunday is 0

cout << wd1.c_encoding() << endl; // get the value wrapped into object, prints 1

cout << wd1.iso_encoding() << endl; // prints 1

cout << wd1 << endl; // prints Mon

weekday wd2 { Sunday }; // constants Sunday, Monday etc. are defined in chrono

cout << wd2.c_encoding() << endl; // prints 0

cout << wd2.iso_encoding() << endl; // prints 7

 // see https://en.cppreference.com/w/cpp/chrono/weekday/encoding.html

cout << wd2 << endl; // prints Sun

https://en.cppreference.com/w/cpp/chrono.html
https://en.cppreference.com/w/cpp/chrono/weekday/encoding.html

Calendar (2)

All the presented classes have method ok() to check the correctness of value. For example:

month m { 13 }; // error not detected

cout << boolalpha << m.ok() << endl; // prints false

There are also operator functions for comparison and:

• to add to and subtract from year duration in years

• to add to and subtract from month duration in years or months

• to add to and subtract from days and weekdays duration in days

• to increment and decrement

• to find the difference as duration in days, months or days

Examples:

year y1 { 2026 };

y1 += years(2);

cout << static_cast<int>(y1) << endl; // prints 2028

year y2 = y1 + years(2);

cout << static_cast<int>(y2) << endl; // prints 2030

month m1 { June };

month m2 = m1 + months(3);

cout << static_cast<unsigned int>(m2) << endl; // prints 9
year y3 { 2025 }, y4 { -44 }; // the year of Julius Caesar's assassination

years from_Caesar_death = y3 – y4; // 2069

Calendar (3)

If we write const 3.14, it is stored as double value. To store it as float on 4 bytes, we need to

write 3.14F or 3.14f. Similarly, constant 5UL is handled as unsigned long long int.

In namespace chrono 2026y means that this is constant year with value 2026 and 30d means

that it is constant day with value 30:

auto y1 { 2025y };

auto d1 { 30d };

Only lowercase y and d are allowed, m is not defined.

Class year_month_day (see https://en.cppreference.com/w/cpp/chrono/year_month_day.html)

is a good tool to operate with calendar dates.

The 4 variants to define 21-Aug-2025 are:

year_month_day ymd1 { 2025y, August, 21d }, ymd2{ 2025y / August / 21d },

ymd3 { August / 21d / 2025y }, ymd4 { 21d / August / 2025y };

There are operator functions for comparison and to add to and subtract from year_month_day

duration in years or months (but not days). Unfortunately, there is no possibility to find the

difference between two objects year_month_day.

Methods year(), month() and day() are to retrieve the components of year_month_day. Method

ok() checks the correctness.

https://en.cppreference.com/w/cpp/chrono/year_month_day.html

Calendar (4)

Class year_month_day has one more constructor:

sys_time now = system_clock::now();

sys_days now_days = timepoint_cast<days>(now);

year_month_day today { now_days };

Thus we have converted the time read from clock into object of class year_month_day.

For backward conversion class year_month_day has operator overloader for casting into

sys_days. Therefore:

year_month_day ymd { 2025y, August, 21d };

sys_days = ymd;

For comparing two objects from class year_month_day there are only two operators: == and

<=>. Example:

auto res = ymd12 <=> ymd2;

if (res == strong_ordering::less) { …. }

Time zone

Method system_clock::now() returns UTC time, not the local time.

cout << system_clock::now << endl; // prints 2025-08-25 12:29:16.2318576

 // but the wristwatch shows 15:29

To get the local time you may use tools from C (see the previous slides). Az an alternative, use

IANA time zone database copied into C++ v.20 library. Remark that on compilers for small

systems this database may be nor available.

sys_time sys_time_utc = system_clock::now();

cout << sys_time_utc << endl;

try

{ // must be in try-catch block

 const time_zone* pEst = locate_zone("Europe/Tallinn");

 local_time est_time = pEst->to_local(sys_time_utc);

 cout << est_time << endl;

}

catch (const std::runtime_error& e)

{

 cout << "Time zone error: " << e.what() << '\n';

}

	Slide 1: Time handling in C (1)
	Slide 2: Time handling in C (2)
	Slide 3: Time handling in C++
	Slide 4: Rational numbers (1)
	Slide 5: Rational numbers (2)
	Slide 6: Rational numbers (3)
	Slide 7: Duration (1)
	Slide 8: Duration (2)
	Slide 9: Duration (3)
	Slide 10: Duration (4)
	Slide 11: Clock and time_point (1)
	Slide 12: Clock and time_point (2)
	Slide 13: Clock and time_point (3)
	Slide 14: Clock and time_point (4)
	Slide 15: Clock and time_point (5)
	Slide 16: Clock and time_point (6)
	Slide 17: Calendar (1)
	Slide 18: Calendar (2)
	Slide 19: Calendar (3)
	Slide 20: Calendar (4)
	Slide 21: Time zone

