Time handling in C (1)
In classical C the reading of current time from the system clock is performed as follows:
#include "time.h"
time t now; // time t is specified by typedef, in Visual Studio it 1s 1s a 64-bit integer
time(&now); // the number of seconds since January 1, 1970, 0:00 UTC

To get the current date and time understandable for humans use the standard struct tm:
struct tm // do not declare it in your code, it 1s already declared by time.h
d
int tm_sec; // seconds after the minute - [0, 60] including leap second
int tm min; // minutes after the hour - [0, 59]
int tm_hour; // hours since midnight - [0, 23]
int tm mday; // day of the month - [1, 31]
int tm_mon; // months since January - [0, 11], attention: January 1s with index 0
int tm_year; // years since 1900, attention, not from the birth of Christ
int tm_wday; // days since Sunday - [0, 6], attention: Sunday 1s with index 0, Monday 1
int tm yday; // days since January 1 - [0, 365]
int tm_1sdst; // daylight savings time flag
s
To fill this struct:
struct tm now_tm;
localtime s(&now tm, &now);

Time handling in C (2)

Example:

printf("Today 1s %d.%d.%d\n",
now_tm.tm_mday, now_tm.tm mon + 1, now_tm.tm_year + 1900);

Function asctime s converts the struct tm to string:

char buf[100];
asctime s(buf, 100, &now tm);
printf("%s\n", buf); // prints like Thu Jan 23 14:26:42 2020

but here we cannot set the format. Better is to use function strffime, for example:

strftime(buf, 100, "%H:%M:%S %d-%m-%Y", &now tm);
printf("%s\n", buf); // prints according to Estonian format 14:26:42 23-01-2020

The complete reference of strftime 1s on http://www.cplusplus.com/reference/ctime/strftime/

The attributes of struct tm may be modified. For example, 1f we want to know what date is
after 100 days, do as follows:

struct tm future tm = now tm,;

future tm.tm mday += 100; // add 100 days

time t future = mktime(& future tm); // convert back to time t
localtime s(&future tm, &future); // convert once more to struct tm
asctime s(buf, 100, &future tm);

printf("%s\n", buf); // prints like Sat May 2 15:26:42 2020

http://www.cplusplus.com/reference/ctime/strftime/

Time handling in C++

In C++ we have more powerful but complicated tools:
#include <chrono> // see https://en.cppreference.com/w/cpp/chrono.html
using namespace std::chrono; // do not forget!

Namespace chrono includes several concepts:
* duration

* timepoint

* clock

* date

* timezone

The last two of them are extensions introduced in C++ v. 20.

https://en.cppreference.com/w/cpp/chrono.html

Rational numbers (1)

In mathematics, a rational number can be expressed as fraction a / b, where a 1s called as
numerator and b as denominator. The decimal expansion of a rational number may have
finite number of digits like 7.234. But it may also have endless number of digits in which
a sequence of digits 1s repeating over and over, like 7 /3 = 2.33333.....

An irrational number like sgrt(2), &, e has also endless decimal expansion, but without
repeating.
Problems with endless rational numbers:

double x = 2.3333333; // actually 1n specification this expression is written as 7 / 3
double y =x * 3; // we get 6.9999999, but the correct value 1s 7

To get results of calculations that are as exact as possible, we need to use template ratio:
typedef <numerator as integer constant, denominator as integer constant> ratio name;

The denominator has default value 1. Examples:

#include <ratio> // see http://www.cplusplus.com/reference/ratio/ratio/

const int numerator = 7, denominator = 3; // must be constant expression
typedef ratio<numerator, denominator> test1;

typedef ratio<7, 3> test2;

To access numerator and denominator, use public members num and den, for example:
cout << testl::num <<'' << testl::den<< endl;

http://www.cplusplus.com/reference/ratio/ratio/

Rational numbers (2)

The following expression 1s for adding ratios:
typedef ratio add<addend 1 as ratio, addend 2 as ratio>ratio name;

Example:

typedef ratio<7, 3> testl;

typedef ratio<5, 6> test2;

typedef ratio add<testl, test2> sum;

cout << sum::num <<''<<sum::den << endl; // prints 19 6

ratio subtract, ratio multiply and ratio divide are similar.

An integral constant 1s a standard class (better to say struct) template that stores the type
and constant value. For example, integral constant<bool, true> stores a boolean value
true and integral constant<int, 100> stores integer 100. It has two members: 7ype and
value.

To compare two ratios write expression:
typedef ratio_equal<ratio 1, ratio 2> integral constant name;
The results 1s integral constant<bool, true> or integral constant<bool, false>

Example:

typedef ratio<7, 3> testl;

typedef ratio<5, 6> test2;

typedef ratio _equal<testl, test2> res;

cout << (res::value ? "Equal" : "Not equal") << end];

Rational numbers (3)

ratio not equal, ratio less, ratio less equal, ratio greater, ratio greater equal are
similar,

All the ratio templates are evaluated at compile time. The values for numerator and
denominator cannot be calculated at run time, for example:

nt x;

cin >> X;

typedef ratio <x, 2> test; // error

There are no C++ operations between rational numbers and integers or doubles. So, 1f we
have

typedef ratio<5, 6> test2;

and we want to multiply 1t with 2, we need to write

typedef ratio<2, 1> test3; // or simply ratio<2>

typedef ratio multiply<test2, test3> test4;

cout << test4::num <<'' << testd::den << endl; // prints 5 3

C—++ has several predefined ratios, for example nano (1.e. 1/ 1€9), micro (1.e. 1 / 1€6), milli
(1.e. 1/1e3), kilo (i.e. 1€3 /1), mega (i.e. 1e6/ 1), etc.

Duration (1)

Template duration (see https://en.cppreference.com/w/cpp/chrono/duration.html)
represents an interval between two timepoints:

template<typename T1, typename T2> class duration { ¥

Here 71 is used for variable storing the number of ticks (int, long int, double, etc.) and 12
1s for ratio presenting the period of one tick in seconds. The default value for 72 is
ratio<l, 1> (or simply ratio<I>). Examples:

duration<long int> d1; // ratio has default value, it means that tick is one second
duration<long int, ratio<60, 1> > d2; // tick 1s one minute

duration <long long int, ratio<l, 10>> d3; // tick 1s one tenth of second

Predefined ratios like nano or micro often help to define durations:
duration <long int, micro> d4; // tick 1s one microsecond

Constructor without parameters does not initialize the number of ticks, consequently
variable d1, d2, d3 and d4 are not ready to use.

duration <long int, milli> d5(1000); // now the duration 1s 1000 ms

Method count returns the value of ticks, for example:
cout << d5.count() << endl;

There are no methods to set a new value ticks.

https://en.cppreference.com/w/cpp/chrono/duration.html

Duration (2)

There are several typedefs for typical durations. Examples:

hours d1(24); // declares time interval 24 hours
minutes d2(10); // declares time interval 10 minutes
seconds d3(20); // declares time interval 20s

milliseconds d4(1500); // declares time interval 1500ms
microseconds d5(1500); // declares time interval 1500us
nanoseconds d6(1500); // declares time interval 1500ns

days d7(31); // declares time interval 31 days (from C++ v.20)
weeks d8(1); // declares time interval 1 week (from C++ v.20)
months d9(3); // declares time interval 3 months (from C++ v.20)
years d10(100); // declares time interval 100 years (from C++ v.20)

Duration has a large set of operator functions for arithmetics and comparison. The

operands may be of different types. Examples:

milliseconds d1(1000);

milliseconds d2(2000);

milliseconds d3 = dI + d2; // get time interval 3000ms

cout << d3 << endl; // prints 3000ms

cout << boolalpha << (d1 > d2) << endl; // prints false

milliseconds d4 = d3 + 1000; // error, operations between durations and integers
// are not defined

Duration (3)

milliseconds d1(1000);

milliseconds d2(2000);

microseconds d3 = d1 + d2; // different types !
cout << d3 << endl; // prints 3000000us

If the implicit cast is not possible, the duration cast operator solves the problem:
milliseconds d4 = d3; // error

milliseconds d4 = <duration cast>(d3); // correct

cout << d4 << endl; // prints 3000ms

But

milliseconds d5(100);

seconds d6 = duration cast<seconds>(d5); // formally correct

cout << d6 << endl; // prints Os because in typical durations the number of ticks 1s integral
duration<double> d7 = d5;

cout << d7 << endl; // prints 0.1s: correct

Read more on https://en.cppreference.com/w/cpp/chrono/duration.html

https://en.cppreference.com/w/cpp/chrono/duration.html

Duration (4)

Suppose we have a long duration measured in seconds. To analyse it, in most cases we
need to recalculate it into format hh:mm:ss. For that C++ v.20 has a helper class
hh_mm_ss.

Examples:

seconds dsec = measure process duration(); // some function is called, result is 7456 s
hh mm ss hmsl(dsec); // create object from class hh_ mm_ss

cout << "Process duration was " << hmsl.hours() <<":" << hms]l.minutes() << ":" <<
hmsl.seconds() << endl; // prints 2h:4min:16s

milliseconds dmsec = measure sorting duration(); // result is 745454924 ms

hh mm_ss hms2(dmsec);

cout << "Sorting needed " << hms2.seconds() << " " << hms2.subseconds() << endl;
// prints 14s 924ms

To compare two objects from class 74 mm_ss turn them to duration:
if (hmsl.to duration() < hms2.to duration()) { }

To covert object from class 2k mm_ss to string with C++ v.20 formatting
cout << format("{:%R}", hmsl) << endl; // prints 02:04
cout << format("{:%7T}", hmsl) << endl; // prints 02:04:16

Read more on https://en.cppreference.com/w/cpp/chrono/hh mm_ss.html

https://en.cppreference.com/w/cpp/chrono/hh mm _ss/formatter.html

https://en.cppreference.com/w/cpp/chrono/hh_mm_ss.html
https://en.cppreference.com/w/cpp/chrono/hh_mm_ss/formatter.html
https://en.cppreference.com/w/cpp/chrono/hh_mm_ss/formatter.html

Clock and time point (1)

C++ v.11 defines 3 clocks:

» system_clock represents timepoints associated with the computer usual real-time clock.
See https://en.cppreference.com/w/cpp/chrono/system clock.html

» steady clock guarantees that it never gets adjusted.

* high resolution clock represents the clock with the shortest possible tick period. In
Visual Studio equivalent with the system clock.

C++ v.20 expands the list of clocks:

* utc clock for Coordinated Universal Time

* tai clock for International Atomic Time

* gps clock for GPS time

In this course we deal only with the system clock. To read the current time from the
system clock use method now():
system_clock::time point now = system clock::now();

Turn attention, that a time point is always associated with a clock:
time point<system clock> t; // correct

system clock::time point t; // correct

time point t; // error, clock not specified

https://en.cppreference.com/w/cpp/chrono/system_clock.html

Clock and time point (2)

Actually, time point (see https://en.cppreference.com/w/cpp/chrono/time point.html) 1s a
template:

template<typename T1, typename T2> class time point { };

Here 7'1 1s used for clocks (system_clock, etc.) and 72 for duration, i.e. the interval
between the current moment and the epoch (or origin, 01.01.1601 in case of Windows,
01.01.1970 1n case of Linux). Its value 1s actually the duration from the epoch (measured
in 100ns units in case of Windows and seconds in case of Linux).

For example, 1f we write:

time point<system clock, duration<long long int, ratio<Il, 1> >>t;

then # measures the number of seconds from epoch, the value is retrieved from system
clock. Theoretically we may declare timepoints in many different ways but actually the
duration parameters (epoch and tick period) are built into clock. Consequently, each clock
must have its own standard for timepoint:

To know which ratio is used in the duration of system clock, write the following snippet:
cout << system_clock::period().num <<" " << system_clock::period().den << endl;
On the instructor's computer the result was 7 10000000.

To know what 1s the type for ticks in the duration of your system clock, write the
following code snippet:

cout << typeid(system clock::rep).name() << endl;

On the instructor's computer the result was int64.

https://en.cppreference.com/w/cpp/chrono/time_point.html

Clock and time point (3)

For many people it is more convenient to continue with C time handling tools:
system_clock::time point now = system clock::now();

time tnow t=mnow; // convert to time t

struct tm now_tm:;

localtime s(&now tm, &now t);

struct tm future tm = now_tm;

future tm.tm mday += 100; // add 100 days

time t future t = mktime(& future tm);

There 1s a standard function std::put time to create from struct tm time strings for iostream
and sstream:

#include <iomanip>

cout << put_time(&future tm, "%d-%m-%Y %H:%M:%S") << end];
or

stringstream sout;

sout << put_time(&future tm, "%d-%m-%Y %H:%M:%S") << end];
cout << sout.str() << endl;

See more from http://www.cplusplus.com/reference/iomanip/put_time/

To turn back to C++ tools:
system_clock::time point future = system clock::from time t(future t);

http://www.cplusplus.com/reference/iomanip/put_time/

Clock and time_point (4)

Timepoint has a set of operator functions for arithmetics and comparison. The only
operation between two timepoints 1s subtraction, its result is a duration:

system_clock::time point start = system_clock::now();

nt 1;

cin >> 1; // to introduce a pause

system_clock::time point end = system _clock::now();

auto diff = end - start;

cout << typeid(diff).name() << endl;

the result 1s class std.:chrono::duration<_ _int64,struct std.:ratio<l,10000000> >, i.e. the
type of duration presenting the difference between two timepoints is the same as the
duration in system_clock::time point.

We may convert implicitly the difference into nanoseconds but not to milliseconds or
seconds:

nanoseconds dn = diff;

duration<double> ds = diff;

cout << dn << endl; // prints 4487655200ns

cout << ds << endl; // prints 4.48766s

Clock and time point (5)

It 1s possible to add to timepoint a duration as well as subtract a duration from it:
system_clock::time point now = system_clock::now();

cout << now << endl; // prints 2025-08-22 11:43:10.4304195
system_clock::time point after an hour = now + hours(1);

cout << after an hour << endl; // prints 2025-08-22 12:43:10.4304195
system_clock::time point before an hour = now - hours(1);

cout << after an hour << endl; // prints 2025-08-22 10:43:10.4304195

Template function floor<>() truncates the timepoint to a precision of days or seconds:
system_clock::time point in_days = floor<days>(now);

cout << in days << endl; // prints 2025-08-22 00:00:00.000000

system_clock::time point in_seconds = floor<seconds>(now);

cout << in seconds << endl; // prints 2025-08-22 10:43:10.000000

Remember that timepoint 1s template<typename T1, typename T2> class time point { ... };
where 71 is the clock and 72 is the duration from the epoch.
time point<system clock, days>tl =time point cast<days>(now);
// t1 presents the number of days from epoch
cout << tl << endl; // prints 2025-08-22
time point<system clock, seconds> t2 = time point cast<seconds>(now);
// 12 presents the number of seconds from epoch
cout << t2 << endl; // prints 2025-08-22 10:43:10

Clock and time point (6)

To simply the work of code writers, several aliases are introduced:
* sys time 1s the alias of time point<system clock, duration>

* sys days is the alias of time point<system clock, days>

* sys seconds 1s the alias of time point<system clock, seconds>

So, we may write simply:

sys_time now = system clock::now();

sys days now days = timepoint cast<days>(now);

sys seconds now_seconds = timepoint cast<seconds>(now);

Calendar (1)

C++ v.20 provides several classes for operating with calendar. The full list 1s on page
https://en.cppreference.com/w/cpp/chrono.html. The most important of them are:

yeary { 2026 }; // allowed values -32767 ... +32767
cout << static cast<int>(y) << endl; // get the value wrapped into object
cout << "This is" << (y.1s leap() 7" " : " not") << " a leap year" << endl; // leap year?

month m1 {2 };// allowed values 1 ... 12

cout << static cast<unsigned int>(ml) << endl; // get the value wrapped into object

month m2 { February }; // constants January, February etc. are defined in namespace chrono
cout << static cast<unsigned int>(ml) << endl; // prints 2

day dl { 15 };// allowed values 1 ... 31
cout << static cast<unsigned int>(d1) << endl; // get the value wrapped into object

weekday wdl {1 };// allowed values O ... 6, Sunday 1s 0
cout << wdl.c encoding() << endl; // get the value wrapped into object, prints 1
cout << wdl.iso encoding() << endl; // prints 1
cout << wdl << endl; // prints Mon
weekday wd2 { Sunday }; // constants Sunday, Monday etc. are defined in chrono
cout << wd2.c encoding() << endl; // prints 0
cout << wd2.1so encoding() << endl; // prints 7
// see https://en.cppreference.com/w/cpp/chrono/weekday/encoding.html
cout << wd2 << endl; // prints Sun

https://en.cppreference.com/w/cpp/chrono.html
https://en.cppreference.com/w/cpp/chrono/weekday/encoding.html

Calendar (2)

All the presented classes have method ok() to check the correctness of value. For example:
month m { 13 }; // error not detected
cout << boolalpha << m.ok() << endl; // prints false

There are also operator functions for comparison and:

* to add to and subtract from year duration in years

* to add to and subtract from month duration in years or months
* to add to and subtract from days and weekdays duration in days
* to increment and decrement

 to find the difference as duration in days, months or days

Examples:

year yl {2026 };

yl +=years(2);

cout << static cast<int>(y1) << endl; // prints 2028

year y2 =yl + years(2);

cout << static cast<int>(y2) << endl; // prints 2030
month m1 { June };

month m2 = m1 + months(3);

cout << static_cast<unsigned int>(m2) << endl; // prints 9
year y3 { 2025 }, y4 { -44 }; // the year of Julius Caesar's assassination
years from Caesar death =y3 —y4; // 2069

Calendar (3)

If we write const 3./4, it 1s stored as double value. To store it as float on 4 bytes, we need to
write 3.14F or 3.14f. Similarly, constant SUL is handled as unsigned long long int.

In namespace chrono 2026y means that this 1s constant year with value 2026 and 304 means
that it is constant day with value 30:
auto yl { 2025y };

auto d1 { 30d };
Only lowercase y and d are allowed, m 1s not defined.

Class year month day (see https://en.cppreference.com/w/cpp/chrono/year month day.html)
1s a good tool to operate with calendar dates.

The 4 variants to define 21-Aug-2025 are:
year month day ymdl {2025y, August, 21d }, ymd2{ 2025y / August/ 21d },
ymd3 { August/21d /2025y }, ymd4 { 21d / August /2025y };

There are operator functions for comparison and to add to and subtract from year month day
duration in years or months (but not days). Unfortunately, there 1s no possibility to find the
difference between two objects year month day.

Methods year(), month() and day() are to retrieve the components of year month day. Method
ok() checks the correctness.

https://en.cppreference.com/w/cpp/chrono/year_month_day.html

Calendar (4)

Class year month day has one more constructor:

sys time now = system_clock::now();

sys days now days = timepoint cast<days>(now);

year month day today { now days };

Thus we have converted the time read from clock into object of class year month day.

For backward conversion class year month day has operator overloader for casting into

sys _days. Therefore:

year month day ymd { 2025y, August, 21d };

sys days = ymd;

For comparing two objects from class year month day there are only two operators: == and
<=>, Example:

auto res = ymd12 <=> ymd2;

if (res == strong_ordering::less) { }

Time zone

Method system clock::now() returns UTC time, not the local time.
cout << system_clock::now << endl; // prints 2025-08-25 12:29:16.2318576
// but the wristwatch shows 15:29

To get the local time you may use tools from C (see the previous slides). Az an alternative, use
[ANA time zone database copied into C++ v.20 library. Remark that on compilers for small
systems this database may be nor available.
sys_time sys time utc = system_clock::now();
cout << sys time utc << endl;
try
{ // must be 1n try-catch block
const time zone* pEst = locate zone("Europe/Tallinn");
local time est time = pEst->to_local(sys time utc);
cout << est time << endl;

b

catch (const std::runtime error& e)

d

cout << "Time zone error: " << e.what() <<"'\n';

b

	Slide 1: Time handling in C (1)
	Slide 2: Time handling in C (2)
	Slide 3: Time handling in C++
	Slide 4: Rational numbers (1)
	Slide 5: Rational numbers (2)
	Slide 6: Rational numbers (3)
	Slide 7: Duration (1)
	Slide 8: Duration (2)
	Slide 9: Duration (3)
	Slide 10: Duration (4)
	Slide 11: Clock and time_point (1)
	Slide 12: Clock and time_point (2)
	Slide 13: Clock and time_point (3)
	Slide 14: Clock and time_point (4)
	Slide 15: Clock and time_point (5)
	Slide 16: Clock and time_point (6)
	Slide 17: Calendar (1)
	Slide 18: Calendar (2)
	Slide 19: Calendar (3)
	Slide 20: Calendar (4)
	Slide 21: Time zone

